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ABSTRACT

The present study considers an assembly of spherical particles, densely packed, between two
vertical flat plates which are at different temperatures.  A continuum model is used and the
flow due to such a temperature difference is investigated.  For a fully developed flow of these
materials, the governing equations reduce to a system of coupled, non-linear ordinary
differential equations.  The equations are integrated numerically.  In so doing, the equations
are discretized using the conventional central finite difference approximation technique and
the unknown conditions are assumed to reduce the problem to an initial value problem.  After
the trial solutions the known boundary conditions at the edge of the integration interval are
compared with the correspondent values provided by the trial solutions.  If the solutions at
this point do not agree with the known boundary conditions the Newton-Raphson method is
used to correct the initial guesses and the iteration is repeated.  This procedure continues until
the solutions converge to the given values.  The technique is found to be powerful for this
type of application.

1.  INTRODUCTION

Granular materials are used in many engineering processes such as the handling of coals,
agricultural products, dry chemicals, sand, and other particulate solids.   For a thorough and
up-to-date review of flowing granular materials the reader is referred to a recent article by
Hutter and Rajagopal (1994).  While heat transfer processes play an important role in the
handling and the processing of these materials (Gudhe et al., (1994), thermal convection
problems have received little attention. Of course, for the cases that have been studied, a



Figure 1. A sketch of the theoretical model

thermodynamic analysis of the constitutive equations has not been carried out.

In many applications these materials are also heated prior to processing, or cooled after
processing (Patton et al., 1986, Uhl and Root, 1967, Gudhe et al., 1994, Sullivan and
Sabersky, 1975, Spelt et al. 1982).  Granular materials exhibit phenomena like normal stress
differences in a simple shear flow, a phenomena usually referred to as dilatancy (Reynolds,
1886).  The normal-stress phenomenon is a characteristics of non-Newtonian fluids and non-
linear elastic solids.  One approach in the modeling of granular materials is to treat it as a
continuum, which assumes that the materials properties of the ensemble may be represented
by continuous functions.  One of the early continuum models for flowing granular materials
based on the principles of modern continuum mechanics was proposed by Goodman and
Cowin (1971,1972).  This work was subsequently modified and improved upon by other
investigators (Savage, 1984, Ahmadi, 1982).  Another approach used in the modeling of
granular materials is based on the techniques used in the kinetic theory of gases (Boyle and
Massoudi, 1990).

In this work we consider the natural convection of granular materials.  The material is
between two infinite vertical flat plates which are at two different temperatures, (cf. Figure
1).  Using a continuum formulation for the stress tensor, the governing equations for the
conservation of mass, momentum, and energy are developed.  A very basic formulation of this
problem was given in Massoudi et al. (1994).

2.  GOVERNING EQUATIONS:

We assume that the stress tensor T is given by, (Goodman and Cowin, 1971, Rajagobal and
Massoudi, 1990).

T= {� (�)+ � (�) /�./� + � (�) tr D}1 +� (�)/�T/�+ � (�)D (1)o 1 2 4 3



where � denotes the volume fraction of the particles, D is the symmetric part of the velocity
gradient, � (�) is similar to pressure in a compressible fluid and is given by an equation ofo

state, � (�) is akin to the second coefficient of viscosity in a compressible fluid, � (�) and2 1

� (�) are the material parameters that reflect the distribution of the granular materials and4

� (�) is the viscosity of the granular materials.  In general, the material properties �  through3 o

�  are functions of the density (or volume fraction �), temperature, and the principal invariant4

of the tensor D, given by:

          1
D =      [(/u) + (/u) ] (2)T

          2

where u is the velocity vector of the particles.  Furthermore, � is related to the bulk density
of the material ', through ' = ' �.  Where '  is the actual density of the grains at the places s

x and time t and the field � is called the volume fraction (or the volume distribution) and is
related to porosity n or the void ratio e by

                     1
� = 1 - n =          (3)
                  1 + e

The material properties �  through �  are discussed by Gudhe et al., (1994).  Furthermore,o 4

we assume that the heat flux vector q satisfies Fourier's law, i.e.,

 q = -K/� (4)

where � is the temperature and K is the thermal conductivity, which, in general, is a function
of � and �.  The governing equations of mass, momentum, and energy are. 

0'
       + div('u) = 0 (5)
0t

    du
'          = div T + 'b (6)
    dt  

    dJ
'          = T.L  -  div q + 'r (7)
    dt  

where b is the body force vector,  J denotes the specific internal energy, q is the heat flux
vector, r is the radiant heat, and L is the velocity gradient.  For the problem under
consideration, we make the following assumptions: (i) the motion is steady; (ii) radiant
heating r can be ignored; (iii) the constitutive equation for the stress tensor is given by
equation (1) and the constitutive equation for the heat flux vector is that of Fourier's law,



given by equation (4); (iv) the density, velocity and temperature fields are of the form

�  = �(x);  u = u(x)j;  �  = �(x);  'b = -' �[1 - �(� - � )]gj (8)s m

where �  is a reference temperature, (for example � =(� +� )/2), g is the acceleration duem m 1 2

to gravity, and � is the coefficient of thermal expansion, and j is the unit vector in the y-
direction.  Furthermore, we assume

� (�) = k�;  � (�) =  �  (� +� ) (9)o 3 3
* 2

 
where �  is a constant and � , � , �  are assumed to be constant.  For thermal conductivity,3 1 2 4

*

we assume (Bashir and Goddard, 1990, Batchelor and O’Brien, 1977).

K = K  (1 + 3��) (10)m

where � = (5-1)/(5+1).  Here, 5 is the ratio of conductivity of the particle to that of the
matrix, and K  is the thermal conductivity of the matrix.  With the above assumptions, wem

obtain the following equations 

   d�                        d�   d �2
k        + 2(�  + � )                  = 0 (11)1 2

   dx                        dx   dx  2

                   d  u                           d�  du2

�  (� + � )          + �  (1 + 2�)               = ' �[1 - �(� - � ) ]g (12)3 3 s m
* 2 *

                   dx                             dx   dx2

                       d �               d�   d�                             du2

2K  (1 + 3��)        + 6K �                = - �  (� + �  )(      )  (13)m m 3
* 2 2

                       dx                dx    dx                             dx 2

with u = 0, � = �   at x = -a; and u = 0, � = �   at x = a, and � >� . For the volume fraction,1 2 1 2

we use the symmetry condition and mass-averaged quantity (see Gudhe et al., 1994) and
assume the following

  d�                     
(      )  = 0;   Q = ,  �dx (14)X=0 -a

a

  dx

Where Q is given.  It is obvious from Eq. (11) that d�/dx = 0 or � = constant is a solution to
that equation.

3.  NUMERICAL SOLUTIONS



Let's define !, 0, and 
 by the following equation:

       x               u              � - �  m! =      ;    1 =       ;   
 =             (15)
       a               U             �  - �   o 1 2

where U  is a reference velocity.  Then equations (11) to (13) becomeo

 d �2
        + R  = 0 (16)1

 d!    2

                 d 1                       d�   d12

R (� +� )          + R (1 + 2�)                - � + R �
 = 0 (17)2 2 4
2

                 d!                         d!    d!  2

                d 
          d�  d
                        d12

(1 + 3��)        + 3�             + R  (� + � ) [      ]  (18)3
2 2

                d!            d!  d!                         d! 2

with 1 = 0 and 
 = 1/2 at ! = -1, and 1 = 0; 
 = -1/2 at ! = 1, and

  d�
(       )  = 0;   N = , �d! (19)!=0 -1

1

  d!   

where N =Q/a.  The dimensionless parameters R , R , R , and R  are given by1 2 3 4

              ka                         �  U2 *
3 oR  =                       ;   R  =             (20)1 2

         2(�  +� )                   2a ' g      1 4 s
2

              � U3 o
* 2

R  =                      ;   R  = �(�  -� ) (21)3 4 1 2

         2K (�  - � )       m 1 2

These dimensionless parameters have the following physical meaning: R  is the ratio of the1

pressure force to the force developed in the material due to the distribution of the void. R2

is the ratio of the viscous force to the gravity force and R  is the product of the Prandtl3

number and the Eckert number.
 
With the conditions given by Eq. (19), the solution for the volume fraction is obtained as

         R !        Q     R     11 1
2

� = -          + (     +      )      (22)
           2          a       3     2 

Equations . (17), and (18)are discretized using the following equation



 d ()        ()  - 2()  + ()         d()        ()  - ()  2 (i+1) i (i-1) (i+1) (i-1)

          =                              ;             =                            (23)

 d!                    �!                    d!             2�!2 2

Where () represents 
, and 1.  Superscripts (i+1), (i), and (i-1) denote the values of 1 and

 at (!+�!), (!), and (!-�!), respectively.  Substituting these expressions into Eqs. (17) and
(18) we obtain the solutions for 1 and 
 at !+�! as

            �  - R �  
  + 2$ 1  + ($  - $ ) 1  (i) (i) (i) (i) (i-1)
4 1 2 11  =                                                                (24) (i+1)

                                 $  + $2 1

             - $ [1  -  1 ]  + [$  - $ ]
  + 2$ 
  5 4 3 3
(i+1) (i-1) 2 (i-1) (i)


  =                                                                        (25)(i+1)

                                    $  + $  4 3

          R (� + � )                 R  (1 + 2�)  d� 2 2
2

$  =                    ;    $  =                            (26) 1 2

               �!                            2�!         d!2

          1 + 3��                    d�                R (� + � ) 3
2

$  =                ;    $  = 3�       ;    $  =                  (27)3 4 5

             �!                         d!                    4�!  2 2

where i is from 0 (for ! = -1) to N (for ! =1) with

1  = 1  = 0;    
  =1/2;    
  = -1/2  (28) (i=0) (i=N) (i=0) (i=N)

and from Eq. (23), 1  and  
  are given by(-1) (-1)

                           d()
()  = ()  - 2�!(      )    (29)(-1) (2)

at ! = -1

                           d!   

where ()is for 1, and 
. Since d1/d! and d
/d! at ! = -1 are not known, they must be
assumed so that 1 , 
  to 1 , 
   can be calculated.  After the trial solutions are(2) (2) (N-1) (N-1)

obtained, the known boundary conditions of 1 and 
 at ! = 1 are compared with the
corresponding values provided by the trial solutions.  If the solutions at this point do not
agree with the known boundary conditions another guess must be used and the iteration is



repeated.  This procedure continues until the solutions for 1 and 
 provided by the initial
guess conditions converge to the given values.  Let X and Y be the values for the unknown
conditions such that

  d1                    d

(     )  = X;    (      )  = Y  (30)!= -1 != -1

  d!                     d!   

The problem is to find the values of X and Y to be such that the boundary conditions at ! =
1 are satisfied, that is to find the solutions of

1  [X,Y] = 0;   
  [X,Y] =  -1/2 (31)(at ! = 1) (at ! = 1)

Thus, if the guess values X and Y are such that these equations are not satisfied, the necessary
corrections �X for X and �Y for Y must be calculated.  By using the Newton-Raphson
technique,  the necessary corrections �X and �Y to the first approximation  are obtained
from the solution of the following set of equations (Phuoc and Durbetaki, 1985):

        01            01                         0
            0
             1
1 +       �X +        �Y = 0;    
 +       �X +        �Y = -      (32) 
        0X            0Y                        0X            0Y             2

Let the subscript X denote the partial derivative with respect to X, (0/0X), and subscript Y
denote the partial derivative with respect to Y, (0/0Y) and let

  = 1 + 1 �X + 1 �Y - 1  (33)1 X Y (at ! = 1)

  = 
 + 
 �X + 
 �Y - 
   (34) 2 X Y (at ! = 1)

Values of �X and �Y should be such that the sum of  = ( + ) is a minimum.   Thus, let1 2
2 2

d/d(�X) = d/d(�Y) =  0,  the corrections �X and �Y are calculated using the following
equations:

a �X + a  �Y = -a    and   a �X + a  �Y = - a  (35)11 12 13 21 22 23

where a  through a  are given as11 23

a  = (1 )   +  (
 )  ;   a  = 1 1   +  
 
  (36)11 X X 12 X Y X Y
2 2

a  =  
 /2 +  11  + 

 ;    a  = a    (37)13 X X X 21 12



a   = (
 )  +  (1 )  ;    a  =  
 /2 +  11  + 

  (38)22 Y Y 23 Y Y Y
2 2

Values of a ...a  are obtained after the partial derivatives 1 ; 1 , 
 , and 
  are calculated11 23 X Y X Y

at ! = 1.  These partial derivatives come from the differentiation of the Eqs. (24) and (25)
with respect to X and Y as follows:

               -R  �  
  + 2$ 1  + ($  - $ ) 1   4 J 1 J 2 1 J
(i) (i) (i) (i - 1)

1    =                                                               (39) J
(i+1)

                                       $  + $  1 2

                f(1 ) + ($  - $ ) 
  + 2$  
   J 4 3 J 3 J
(i - 1) (i)


    =                                                          (40) J
(i+1)

                                    $  + $  3 4

f(1 ) = 2$  (1   - 1 )(1  - 1 )  (41) J 5 J J
(i + 1) (i - 1) (i + 1) (i - 1)

Where J is for X and Y.  Equations (39) to (41) are called perturbation equations which  give
the rate of change of the solutions of the original equations,  (Eq.24 and Eq.25), with respect
to the initially guessed conditions.  These equations are calculated with the following initial
conditions of d1/d! and d
/d! at ! = -1 as follows:

  d1          d
                  d1          d

(      )  = (      )  = 1;     (      )  = (       )  = 1  (42)X Y X Y

  d!           d!                   d!          d!
 

1  = 1   - 2�!;   
  = 
   - 2�!   (43)X X Y Y
(-1) (2) (-1) (2)

1  = 1  =   1  = 
  = 
  =   
  (44)Y X Y X X Y
(-1) (1) (1) (-1) (1) (1)

Equations (24), (25), (39-41)  are calculated simultaneously using �! = 0.1.  The
convergence was obtained after 5 to 6 iterations.

4.  RESULTS AND DISCUSSIONS

When granular materials are packed between two vertical plates, which are at different
temperatures, the materials near the hot plate are heated and the materials near the colder
plate are cooled.  As a result of such a temperature difference a natural convection flow
ensues and the materials move.  It is expected that such a flow depends on the competition
between various forces such as the pressure force, the viscous force, the gravity force, the



Figure 2. Volume fraction �  as a function of !: Effect
of R ; (N = 0.9)1

force developed in the materials etc.  and the transport properties.  Thus, the solutions of the
above equations with respect to R , R , R , R , N, and + as parameters will reveal the1 2 3 4

characteristics of the natural convection flow and heat transfer between the hot and the cold
surfaces.  Since the main emphasis in this paper is on the numerical technique developed for
the calculations, we present a few cases showing the powerful capability of the technique in
obtaining the solutions for this complex problem. In particular, we focus on the importance
of the effects of R  and R  as typical examples for such an application.1 3

  
For a given value of N, equation (22) describes the distribution of the volume fraction in !-
direction under the competition between the pressure force and the force developed in the
materials due to the distribution of the particles (or the volume fraction forces).  Such a
competition is represented by the dimensionless parameter R  which was defined as the ratio1

of the pressure force to the force developed in the materials due to the volume fraction
distribution.  Typical results showing the effect of the dimensionless parameter R  on the1

distribution of the volume fraction were plotted in Fig. 2 for N = 0.9 and R  was taken from1

-1.0 to 1.0.  These values of R  were chosen so that two possible patterns of the distribution1

of the materials could be demonstrated.

The results showed that the volume fraction � as a function of ! decreased as the absolute
value of R  decreased and it became constant and equal to N/2 when R  was equal to zero.1 1

It should be noted that R  is large when the pressure force is dominant over the force1

developed in the materials and R  is small when the force developed in the materials is large1

compared to the pressure force.  Thus, the dependency of � on R  presented here indicates1

that these forces have two different functions.  The pressure force is the force that tends to
disturb the distribution of the materials while the other can be thought of as the force that is
acting against the pressure force and tends to rearrange the materials into a more uniform
distribution pattern.



Figure 3. Dimensionless velocity u as a function of the
dimensionless distance !: Effect of R ; (N = 0.9; R1 2

= 0.1; R  = 0.01; R  = 10; � = 0.25)3 4

Figure 4. Dimensionless temperature 
 as a function of the
dimensionless distance !: Effect of R ; (N = 0.9; R1 2

= 0.1; R  = 0.01; R  = 10; � = 0.25)3 4

When R  was not equal to zero, however, two distribution patterns were obtained depending1

on whether R  was negative or positive.  When R  was positive (the pressure force has the1 1

same sign as the force developed in the materials) � reached its maximum value at ! = 0 and
its minimum values were at the plates.  Thus, this means that the region near the center has
more particles than do the regions near the plates.  When R  was negative (the pressure force1

has the opposite sign to the force developed in the materials) � had a minimum value at ! =



Figure 5. Effect of the dimensionless parameter R  on the3

dimensionless velocity profiles;  (N = 1; R  = 0; R  =1 2

0.1; R  = 10; � = 0.25)4

0 and maximum values were at the plates.  More particles are packed near the plates than the
region near the center.

The effects of R  on the velocity and temperature profiles were shown in Figs. 3 and 41

respectively.  The results shown in these figures were obtained when R , R , R , and N were2 3 4

kept constant and R  =-1.5, 0.0 and 1.3 were used.  These values were chosen to represent1

three different patterns of the distribution of the volume fraction.  Negative R , (R  =-1.5)1 1

represents the situation under which the concentration of the materials is denser near the
plates than in the region near the centerline.  Positive R , (R = 1.3), is for the case that there1 1

are more materials in the center region than in the regions near the plates.  And R  = 01

represents the case that the materials are uniformly distributed.

For these three situations the results always showed a nearly linear decrease of the
dimensionless temperature from the hot plate to the colder one.  Thus, the dimensionless
parameter R  does not have a significant effect on the temperature distribution.  The results1

on the velocity profiles exhibited the fact that the materials moved but the patterns by which
the materials moved were the same regardless of how the volume fraction behaved.  That is
the materials always moved with forward velocities in the region near the hotter plate and
reserved velocities in the region near the colder plate.  The only effect of R  that was detected1

by this work was that, when R  had a negative value and its absolute value increased the1

forward flow velocity decreased and the reversed flow velocity increased.  On the other hand,
when R  had a positive value the forward flow velocity increased and the reversed flow1

velocity decreased with R .1



Figure 6. Effect of the dimensionless parameter R  on the3

dimensionless temperature profiles;  (N = 1; R  = 0;1

R  = 0.1; R  = 10; � = 0.25)2 4

The effects of the dimensionless parameter R  on the velocity and the temperature profiles3

were shown in Figs. 5 and 6 respectively.  The results indicated that the forward flow was
dominant when R  was large while the reversed flow was significant when R  was small.3 3

Parameter R  also had a strong effect on the material heating process.  When R  was small the3 3

heat transfer at the hot plate (!=-1) represented by (d
/d!)  had negative values.  Thus the!=-1

hot plate acted as a heat source that heated the materials.  When R  was large, however, the3

heat transfer at !=-1 reversed its sign and (d
/d!)  became positive.  The hot plate became!=-1

a heat sink and the heat was transferred from the materials to the plate.

The materials between the two plates are heated by two sources: the high temperature of the
hot plate and the heat generated by the flow of the materials.  If the material flow is not
significant, the hot plate becomes a significant heat source that heats the materials.  In this
case the material temperature  must be less than that of the hot plate and d
/d! is negative at
!=-1.  If the material flow is intense, the heat generated (or the viscous dissipation) from such
a flow can be more significant than the heat transfer from the hot plate. In this case, the
materials can be heated to a temperature that is higher than the temperature of the plate.  The
materials is now a heat source with respect to the hot plate.  Heat is transferred from the
materials to the plate and d
/d! will have a positive value at !=-1.

5.  CONCLUSIONS

The natural flow and heat transfer of an assembly of spherical particles, densely packed,



between two vertical flat plates which are at different temperatures have been studied.  A
continuum model was used to develop the governing equations.  For a fully developed flow
of these materials, the governing equations reduced to a system of coupled, non-linear
ordinary differential equations.  Various dimensionless parameters were defined to represent
the effects of various transport properties and the competitions between the pressure force,
the volume fraction distribution forces, and the gravity forces.  The results showed that the
materials moved with forward velocities near the hot plate and reversed velocities near the
colder plate

The present numerical calculations used the conventional central finite difference
approximation technique and the Newton-Raphson method for correcting the initial guesses
for the unknown conditions.  The technique required an additional set of N  x N  (Node unknown ode

is the number of the governing equations and N  is the number of the unknown boundaryunknown

conditions) differential equations that must be integrated simultaneously with the original
governing equations.  These equations, referred as the perturbation equations, gave the rate
of change of the solutions of the original differential equations with respect to the guessed
conditions.  Thus, the technique reduced the guess work and the computer time and it was
powerful for this type of application.  The convergence was obtained after less than five or
six iterations and it was insensitive to the initial guess for small values of R .  When larger3

values of R  were used the convergence was more difficult and it became very sensitive to the3

initial guess.

6.  NOMENCLATURES

b denotes the body force vector
D is the symmetric part of the velocity gradient, Eq. 4
e void ratio e
g is the acceleration due to gravity
K thermal conductivity
K is the thermal conductivity of the matrix.m

L is the velocity gradient
n porosity n
Q defined by Eq. 14
q is the heat flux vector
r radiant heat
R defined by Eq. 201

R defined by Eq. 202

R defined by Eq. 213

R defined by Eq. 214

T is the stress tensor
t time
U reference velocityo

u is the x-component  velocity of the particles.
u is the velocity vector of the particles



x x-coordinate
� is similar to pressure in a compressible fluido

� is akin to the second coefficient of viscosity in a compressible fluid2

� ,� are the material parameters that reflect the distribution of the granular materials1 4

� is the viscosity of the granular materials3

 �  is a constant3
*


 dimensionless temperature
� is the coefficient of thermal expansion.
J denotes the specific internal energy
� is defined as (5-1)/(5+1)
�  is the reference temperature, � =(� +� )/2)m m 1 2

� is the temperature
� volume fraction of the particles
! dimensionless distance
' is the actual density of the grains
1 dimensionless velocity
5 is the ratio of conductivity of the particle to that of the matrix
Subscripts
X derivative with respect to X
Y derivative with respect to Y
Superscripts
(i) at i position
(i-1) at i-1 position
(i+1) at i+1 position
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